Application: , , Product: IRis-F1

High-resolution spectroscopic measurements of cold samples in supersonic beams using a QCL dual-comb spectrometer

Josef A. Agner, Sieghard Albert, Pitt Allmendinger, Urs Hollenstein, Andreas Hugi, Pierre Jouy, Karen Keppler, Markus Mangold, Frédéric Merkt & Martin Quack

Molecular Physics; 2022

View abstract | Access journal publication

Optical frequency-comb spectroscopy has proven a very useful tool for high-resolution molecular spectroscopy. Frequency combs based on quantum-cascade lasers (QCL) offer the possibility to easily explore the mid-infrared spectral range (4 µm to 12 µm), but are characterised by large repetition frequencies (∼ 10 GHz) which make them seemingly unsuitable for high-resolution spectroscopy. Here, we present techniques to overcome this limitation. We have employed the combined advantages of high temporal and high spectral resolution to measure the infrared (IR) spectra of CF4 and CHCl2F in pulsed, skimmed supersonic beams. The low rotational temperature of the beams and the narrow expansion cone after the skimmer enabled the recording of spectra of cold samples with high resolution. The spectra cover the range from 1200 cm−1 to 1290 cm−1 and the narrowest lines have a full width at half maximum of 15 MHz, limited by the Doppler effect. The results demonstrate the potential of QCL dual-comb spectroscopy for broadband (> 60 cm−1) acquisition of spectra at high spectral (better than 5·10−4 cm−1, 15 MHz) and temporal (better than 4 µs) resolution and high sensitivity in the mid-infrared range. The power of the new technology is demonstrated by comparison with previous results for these molecules obtained by FTIR and diode laser spectroscopy.


Application: Product: IRcell-S

ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes

Ghorbani, Ramin; Schmidt, Florian M.

Optics Express, Optical Society of America; 2017

View abstract | Access journal publication

We present a compact sensor for carbon monoxide (CO) in air and exhaled breath based on a room temperature interband cascade laser (ICL) operating at 4.69 µm, a low-volume circular multipass cell and wavelength modulation absorption spectroscopy. A fringe-limited (1σ) sensitivity of 6.5 × 10−8 cm−1Hz-1/2 and a detection limit of 9 ± 5 ppbv at 0.07 s acquisition time are achieved, which constitutes a 25-fold improvement compared to direct absorption spectroscopy. Integration over 10 s increases the precision to 0.6 ppbv. The setup also allows measuring the stable isotope 13CO in breath. We demonstrate quantification of indoor air CO and real-time detection of CO expirograms from healthy non-smokers and a healthy smoker before and after smoking. Isotope ratio analysis indicates depletion of 13CO in breath compared to natural abundance.


Application: Product: IRis-F1

Real-time breath gas analysis of CO and CO2 using an EC-QCL

Ghorbani, Ramin; Schmidt, Florian M.

Applied Physics B; 2017

View abstract | Access journal publication

Real-time breath gas analysis is a promising, non-invasive tool in medical diagnostics, and well-suited to investigate the physiology of carbon monoxide (CO), a potential biomarker for oxidative stress and respiratory diseases. A sensor for precise, breath-cycle resolved, simultaneous detection of exhaled CO (eCO) and carbon dioxide (eCO2) was developed based on a continuous wave, external-cavity quantum cascade laser (EC-QCL), a low-volume multi-pass cell and wavelength modulation spectroscopy. The system achieves a noise-equivalent (1σ) sensitivity of 8.5 × 10−8 cm−1 Hz−1/2 and (2σ) detection limits of 9 ± 2 ppbv and 650 ± 7 ppmv at 0.14 s spectrum acquisition time for CO and CO2, respectively. Integration over 15 s yields a precision of 0.6 ppbv for CO. The fact that the eCO2 expirograms measured by capnography and laser spectroscopy have essentially identical shape confirms true real-time detection. It is found that the individual eCO exhalation profiles from healthy non-smokers have a slightly different shape than the eCO2 profiles and exhibit a clear dependence on exhalation flow rate and breath-holding time. Detection of indoor air CO and broadband breath profiling across the 93 cm−1 mode-hop-free tuning range of the EC-QCL are also demonstrated.


Application: Product: IRcell-S

Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies

Jouy, P.; Mangold, M.; Tuzson, B.; Emmenegger, L.; Chang, Y.; Hvozdara, L.; Herzig, H. P.; Wägli, P.; Homsy, A.; Rooij, N. F.; Wirthmueller, A.; Hofstetter, D.; Looserg, H.; Faista, J.

Analyst; 2014

View abstract | Access journal publication

In this paper we present two compact, quantum cascade laser absorption spectroscopy based, sensors developed for trace substance detection in gases and liquids. The gas sensor, in its most integrated version, represents the first system combining a quantum cascade laser and a quantum cascade detector. Furthermore, it uses a toroidal mirror cell with a volume of only 40 cm3 for a path length of up to 4 m. The analytical performance is assessed by the measurements of isotope ratios of CO2 at ambient abundance. For the 13CO2/12CO2 isotope ratio, a measurement precision of 0.2‰ is demonstrated after an integration time of 600 s. For the liquid sensor, a microfluidic system is used to extract cocaine from saliva into a solvent (PCE) transparent in the mid-infrared. This system is bonded on top of a Si/Ge waveguide and the concentration of cocaine in PCE is measured through the interaction of the evanescent part of the waveguide optical mode and the solvent flowing on top. A detection limit of <100 μg mL−1 was achieved with this system and down to 10 μg mL−1 with a simplified, but improved system.


Application: Product: IRcell-S

Compact multipass optical cell for laser spectroscopy

Tuzson, B.; Mangold, M.; Looser, H.; Manninen, A.; Emmenegger, L.

Optical Society of America; 2013

View abstract | Access journal publication

A multipass cell (MPC) design for laser absorption spectroscopy is presented. The development of this new type of optical cell was driven by stringent criteria for compactness, robustness, low volume, and ease of use in optical systems. A single piece of reflective toroidal surface forms a near-concentric cavity with a volume of merely 40  cm³. Contrary to traditional MPCs, this design allows for flexible path-length adjustments by simply changing the aiming angle of the laser beam at the entrance window. Two effective optical path lengths of 2.2 and 4.1 m were chosen to demonstrate the cell’s suitability for high-precision isotope ratio measurements of CO2 at 1% and ambient mixing ratio levels.


Application: , , , Product: IRis-F1

Monitoring formaldehyde in a shock tube with a fast dual-comb spectrometer operating in the spectral range of 1740–1790 cm–1

Peter Fjodorow, Pitt Allmendinger, Raphael Horvath, Jürgen Herzler, Florian Eigenmann, Markus Geiser, Mustapha Fikri and Christof Schulz

Applied Physics B volume 126, Article number: 193; 2020

View abstract | Access journal publication

A dual-frequency-comb spectrometer based on two quantum-cascade lasers is applied to kinetics studies of formaldehyde (HCHO) in a shock tube. Multispectral absorption measurements are carried out in a broad spectral range of 1740–1790 cm–1 at temperatures of 800–1500 K and pressures of 2–3 bar. The formation of HCHO from thermal decomposition of 1,3,5-trioxane (C3H6O3, 0.9% diluted in argon) and the subsequent oxidation of formaldehyde is monitored with a time resolution of 4 µs. The rate coefficient of the decomposition of C3H6O3 (i.e., HCHO formation) is found to be k1 = 6.0 × 1015 exp(− 205.58 kJ mol−1/RT) s–1. For the oxidation studies, mixtures of 0.36% C3H6O3 and 1% O2 in argon are used. The information of all laser lines, along with the consideration of individual signal variance of each line, is utilized for kinetic and spectral analysis. The experimental kinetic profiles of HCHO are compared with simulations based on the mechanisms of Zhou et al. (Combust Flame, 197:423–438, 2018) and Cai and Pitsch (Combust Flame, 162:1623–1637, 2015).


Application: Product: IRis-F1

Impact of breath sampling on exhaled carbon monoxide

Ramin Ghorbani, Anders Blomberg and Florian M Schmidt

Journal of Breath Research, Volume 14, Number 4; 2020

View abstract | Access journal publication

The influence of breath sampling on exhaled carbon monoxide (eCO) and related pulmonary gas exchange parameters is investigated in a study with 32 healthy non-smokers. Mid-infrared tunable diode laser absorption spectroscopy and well-controlled online sampling is used to precisely measure mouth- and nose-exhaled CO expirograms at exhalation flow rates (EFRs) of 250, 120 and 60 ml s−1, and for 10 s of breath-holding followed by exhalation at 120 ml s−1. A trumpet model with axial diffusion is employed to fit simulated exhalation profiles to the experimental expirograms, which provides equilibrium airway and alveolar CO concentrations and the average lung diffusing capacity in addition to end-tidal concentrations. For all breathing maneuvers, excellent agreement is found between mouth- and nose-exhaled end-tidal CO (ETCO), and the individual values for ETCO and alveolar diffusing capacity are consistent across maneuvers. The eCO parameters clearly show a dependence on EFR, where the lung diffusing capacity increases with EFR, while ETCO slightly decreases. End-tidal CO is largely independent of ambient air CO and alveolar diffusing capacity. While airway CO is slightly higher than, and correlates strongly with, ambient air CO, and there is a weak correlation with ETCO, the results point to negligible endogenous airway CO production in healthy subjects. An EFR of around 120 ml s−1 can be recommended for clinical eCO measurements. The employed method provides means to measure variations in endogenous CO, which can improve the interpretation of exhaled CO concentrations and the diagnostic value of eCO tests in clinical studies.


Application: Product: IRis-F1

Fitting of single-exhalation profiles using a pulmonary gas exchange model—application to carbon monoxide

Ramin Ghorbani and Florian M Schmidt

Journal of Breath Research, Volume 13, Number 2; 2019

View abstract | Access journal publication

Real-time breath gas analysis coupled to gas exchange modeling is emerging as promising strategy to enhance the information gained from breath tests. It is shown for exhaled breath carbon monoxide (eCO), a potential biomarker for oxidative stress and respiratory diseases, that a weighted, nonlinear least-squares fit of simulated to measured expirograms can be used to extract physiological parameters, such as airway and alveolar concentrations and diffusing capacities. Experimental CO exhalation profiles are acquired with high time-resolution and precision using mid-infrared tunable diode laser absorption spectroscopy and online breath sampling. A trumpet model with axial diffusion is employed to generate eCO profiles based on measured exhalation flow rates and volumes. The concept is demonstrated on two healthy non-smokers exhaling at a flow rate of 250 ml s−1 during normal breathing and at 120 ml s−1 after 10 s of breath-holding. The obtained gas exchange parameters of the two subjects are in a similar range, but clearly distinguishable. Over a series of twenty consecutive expirograms, the intra-individual variation in the alveolar parameters is less than 6%. After a 2 h exposure to 10 ± 2 ppm CO, end-tidal and alveolar CO concentrations are significantly increased (by factors of 2.7 and 4.9 for the two subjects) and the airway CO concentration is slightly higher, while the alveolar diffusing capacity is unchanged compared to before exposure. Using model simulations, it is found that a three-fold increase in maximum airway CO flux and a reduction in alveolar diffusing capacity by 60% lead to clearly distinguishable changes in the exhalation profile shape. This suggests that extended breath CO analysis has clinical relevance in assessing airway inflammation and chronic obstructive pulmonary disease. Moreover, the novel methodology contributes to the standardization of real-time breath gas analysis.